

presented at Autonomous Agents 2001

Montreal, Canada, May 28 – June 1, 2001

Specifying Agent Behavior as Concurrent Tasks
Scott A. DeLoach

Department of Electrical and Computer Engineering
Air Force Institute Of Technology

Wright-Patterson Air Force Base, Ohio 45433-7765
sdeloach@computer.org

ABSTRACT
Software agents are currently the subject of much research in
many interrelated fields. Unfortunately, there has not been
enough emphasis on defining the techniques required to build
practical agent systems. While many agent researchers refer to
tasks, few really define what they mean. Tasks not only define the
internal processing an agent must perform, but also how
interactions with other agents relate to internal processes.

1. Introduction
Many agent researchers refer to tasks performed by roles within a
multiagent system. However, few really define the essence of
what they mean by tasks. We believe that the definition of tasks
is critical to define completely the behavior of multiagent system.
Tasks not only define the types of internal processing an agent
must do, but also how interactions with other agents relate to
those internal processes. Some researchers have focused on
coordination and some on internal agent reasoning, few have
combined the two.

In general, our research has focused on developing the
methodology, techniques, and tools for building practical agent
systems [1]. To this end, we have developed the Multiagent
Systems Engineering methodology [6] that defines multiagent
systems in terms of agent classes and their organization. We
define their organization in terms of which agents can
communicate using conversations. There are two basic phases in
MaSE: analysis and design. The first phase, Analysis, includes
three steps: capturing goals, applying use cases, and refining
roles. In the Design phase, we transform the analysis models into
constructs useful for actually implementing the multiagent system
via four steps: creating agent classes, constructing conversations,
assembling agent classes, and system design. In this paper, we
present concurrent tasks, which we use in the analysis phase to
define the internal processing of communications of roles. A
more complete definition of concurrent tasks is found in [2].

2. Concurrent Tasks
We define agent behavior to by a set of n concurrent tasks. Each
task specifies a single thread of control that defines the behavior
of an agent and integrates inter-agent as well as intra-agent
interactions. We typically think of concurrent tasks as defining
how a role decides what actions to take, not necessarily what the
agent does. This is an important distinction when talking about
agents since hard-coding specific behavior may not be the ideal
case. Often agents incorporate the concept of plans and planning
to determine what to do. In these cases, we would develop a
concurrent task for determining how the planning and plan
implementation occurs, but not for describing the individual plans
themselves. Concurrent tasks are specified graphically using a

finite state automaton as shown in Figure 1. Tasks that start with
null transition from the start state are assumed to start execution
upon startup of the agent and continue until the agent terminates
or an end state is reached. Tasks that have a receive event on the
initial transition are assumed to be reactive and start upon the
receipt of a particular message.

new-info(type, source) LookupRequestors
list = findRequestors(type)

ag = getRequestor(pop(list))

wait

continue
ag = getRequestor(pop(list))

[size(list) > 0] ^ send(return-info-source(type, source), ag)

receive(acknowledge, ag) [size(list) > 0]

^ send(return-info-source(type, source), ag)

receive(acknowledge, ag) [size(list) = 0]

[size(list) = 0]

Figure 1. Inform Requestors of New Source Task

Activities are used inside states to specify functions carried out by
the agent. While tasks execute concurrently and carry out high-
level behavior, they are coordinated using internal events.
Internal events are passed from one task to another and are
specified on the transitions between states. To communicate with
other agents, external messages can be sent and received. These
are specified as send and receive events, which send and retrieve
messages from the message-handling component of the agent,
which is assumed to exist. Besides communication with other
agents, tasks can interact with the environment via reading
percepts or performing operations that affect the environment.
This interaction is typically captured by activities executed within
the task states. By including reasoning within tasks, agents are
not "hardwired" or purely reflexive. They can plan, search, or use
knowledge-based reasoning to decide on appropriate actions

Concurrent tasks have two components: states and transitions.
These states and transitions are similar to other finite automata
states and transitions. Transition syntax is shown below.

trigger [guard] ^ transmission(s)

A trigger is an event received from another agent or concurrent
task, the guard is a Boolean condition, and the transmission
represents the sending of an event to another concurrent task or a
message to another agent. Two special events are used to indicate
that a message is actually sent/received to/from another agent:
send and receive. The send event is used to send a message to an
agent and has the following syntax.

send(message, agent)

For example, in the transition from LookupRequestors to wait,
send(return-info-source(type, source),ag), denotes a
transmission. In this case, if the condition size(list)>0 is true,
this is a message to agent to return-info-source(type,
source). In this case, return-info-source is the
performative while (type, source) defines the message
content. The syntax of the receive event is shown below.

receive(message, agent)

In this case, a receive event is only valid as a trigger and follows
the same syntax rules as the send event.

States may contain activities (represented as functions), which can
be used to represent internal reasoning, reading a percept from
sensors, or performing actions via effectors. Multiple activities
may be included in a single state and are performed in sequence.
Once in a state, the task remains in that state until activity
processing is complete and a transition out of the state becomes
enabled.

3. Task Types
As stated initially, the goal of concurrent tasks is to define the
behavior of agents, tying the internal reasoning processes of the
agent to its interaction with other internal processes as well as
externally with other agents. Based on the semantics presented in
the previous section, we can categorize these tasks by their life
span and their responsiveness.

There are two types of task life spans: persistent or transient. A
persistent task is a task that has a null transition from the start
state to the first state – it does not have an event that initiates its
execution. We assume that persistent tasks start when the agent is
initiated and continue until the agent or the task terminates. On
the other hand, a transient task has a specific trigger on the
transition from the start state. A transient task is not executed
when the agent starts, but waits until its trigger is received by the
agent. With transient tasks, it is possible to have multiple,
concurrently executing tasks of the same type.

As far as responsiveness, a task may be reactive, proactive, or
heterogeneous. A reactive task either has an idle state where it
waits for a triggering event before actually starting any
processing, or is a transient task that starts executing in response
to event. Proactive tasks do not have idle states and are not
transient. They are continually generating requests for other
agents or tasks. A heterogeneous task, as the name suggests, is a
combination of reactive and proactive tasks. A heterogeneous
task may have idle states, but does not start in an idle state. It
generates at least one request for another agent or task before
entering an idle state.

Based on these task definitions, we can categorize agent whose
behavior is defined by tasks as either proactive or reactive. A
proactive agent is an agent with at least one proactive or
heterogeneous task while a reactive agent is an agent whose tasks
are all reactive.

4. Related Work
Much of our work on Concurrent Task Models stems from work
originally done by Harel on Statecharts [4], which is the basis for
state diagrams in many of the current object oriented modeling

languages. Statecharts are a very large, complex language
supporting concurrency, conditional transitions, and event input
and output. The basic difference between Concurrent Tasks and
Statecharts is the ability to define parameterized events and
activities inside states in Concurrent Tasks. Concurrent tasks are
also similar to Dooley graphs for agent coordination [5]. Another
approach to modeling behavior and coordination in multiagent
systems is the use of Petri nets, such as the Ferber’s BRIC
formalism [3]. While Petri nets make the parallelism between
tasks and agents explicit, to the less trained practioner they can be
more difficult to use and understand.

5. Conclusions
Concurrent Tasks are the central behavioral model used in the
analysis phase of the Multiagent Systems Engineering
methodology. By analyzing the system as a set of roles and tasks,
a system designer is lead naturally to the definition of
autonomous, pro-active agents that coordinate their actions to
solve the overall system goals. Future work on MaSE and
Concurrent Tasks include the automatic transformation of the
behavior modeled by concurrent tasks into concrete designs, and
eventually source code. So far, Concurrent Tasks have been used,
as part of MaSE, to analyze and design a number medium sized
multiagent systems ranging from information systems, distributed
mixed-initiative planners, biologically-based immune systems, to
control systems for autonomous uninhabited air vehicles.

6. Acknowledgements
The Air Force Office of Scientific Research sponsored this
research. The views expressed in this article are those of the
authors and do not reflect the official policy or position of the
United States Air Force, Department of Defense, or the US
Government.

7. References
[1] DeLoach, S. A., and Wood, M. Developing Multiagent

Systems with agentTool. The Seventh International
Workshop on Agent Theories, Architectures, and Languages
(ATAL-2000). Boston, MA, July 7-9, 2000.

[2] DeLoach, S. A., Specifying Agent Behavior as Concurrent
Tasks: Defining the Behavior of Social Agents. Technical
Report, Air Force Institute of Technology, AFIT/EN-TR-00-
03, July 2000.

[3] Ferber, J. Multi-Agent Systems: an Introduction to
Distributed Artificial Intelligence. Addison Wesley
Longman, 1999.

[4] Harel, E., and Politi, M. Modeling Reactive System with
Statecharts: the Statemate Approach. McGraw-Hill, New
York, New York. 1998.

[5] Parunak, H. V. D. Visualizing agent conversations: Using
Enhanced Dooley graphs for agent design and analysis. In
Proceedings of the 2nd International Conference on
Multiagent Systems, pages 275-282. AAAI Press, 1996.

[6] Wood, M. F., and DeLoach, S. A. An Overview of the
Multiagent Systems Engineering Methodology. The First
International Workshop on Agent-Oriented Software
Engineering (AOSE-2000), Limerick Ireland, June 2000.

